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Transfer processes between a solid body and a liquid or gaseous medium are significantly intensified in the presence 

of oscillatory relat ive motion between the body and the medium [1-4]. Considerations connected with the mechanism of 

the interaction between sound vibrations and transfer processes are l imited to speculations about the effect of sound on 

thermal and diffusion boundary layers. Published work indicates that, in the present state of our knowledge of the mech-  

anism of this process, it is impossible to make a theoret ical  analysis of transfer processes in a sound field [5]. In this 

paper we shall set up certain relations that determine the intensity of heat transfer in a sound field for l imit ing values of 

the dimensionless groups which characterize the process. 

Notation. 

x - longitudinal coordinate u - 

y - transverse coordinates 62 - 
t - t ime D - 

u -- longitudinal component of veloci ty  P - 

v - transverse component of veloci ty G -- 

s - -  displacement amplitude of particle N -- 

w -- angular frequency of vibrations N0 - 
B -- vibration speed ~ - 

X - wavelength T -- 

R - radius of cylinder ~ - 

T - temperature 6t - 

r = urr - dimensionless t ime 

kinematic  viscosity 

thickness of thermal boundary layer 

thermal diffusivity 

Prandtl number 

Grashof number 

Nusselt number based on diameter  

Nusselt number based on radius 

stream function 

wall temperature 

dimensionless coordinate 

thickness of momentum boundary layer 

~l--g]/o)/2v,  U = u / B ,  V = v / B ,  X = x / B ,  Y = g / R  

Indices and s)rmbols: ' - pulsating component of temperature and veloci ty ,  0 - stationary component of temperature and 
veloci ty ,  err - error function, < > - t ime  average.  

w 1. In dimensionless form, the equations of the momentum boundary tayer in the Oxy system of coordinates 
(Fig. 1) are 

OU s OU s OU "v 02U s o OU~ OU~ (1 .1)  
a,  + -N- v ~ + - K  u ~ = o,;~ oY< + --N- ~7 --5-2- + o,  

OU OV 
OX q - - - - g y = O ,  U = 0 ,  V--0 at y - - 0 ;  U-=U~162  at y----oo. (1 .2)  

Equation (1 .1)  and all  following derivations hold for 

oR2 4 t ,  a 4 t ,  2nR > t .  (I.8) 

Consider the case s/R << 1. Experimental studies [6-8] show that in this case there develop in the fluid stationary 

circulating currents - t h e  secondary flow (Fig. 2). 

0/\. ,Z" 

Fig. 1. 

We shall assume that the rate of heat transfer is determined by the ve loc -  

ity of the secondary flow. Then the problem reduces to the determination of 

the temperature field in the thermal  boundary layer,  which develops from the 

generatrix of the  cylinder that constitutes the stagnation line of the secondary 

flow. The veloci ty  of the secondary flow was calculated by Schlichting [8], 

who solved the system of equations (1 .1 ) - (1 .2 )  by the method of successive 

approximations. 

The longitudinal component of veloci ty  is represented by 8chlichttng in 

the form u = u 0 + u', where u0 and u' are the stationary and pulsating compon- 

ents of ve loci ty ,  respect ively.  The two components are 

B 2 2z  3 B 2 2x 
u o = 2 " - o R - s i n ' - R  -/(T1) 2 o)R s in- -~  

(1 .4)  

u' = 2B sin -k -  [cos (0t - -  e -~ cas (tot - -  rl)l. 
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Here 

/ (~l) = e-~ (1/2~1 -5 2) sin ~1 -5 1/2e-~ (1 - -  a3) cos T I -5 1/4e-~. 

The thickness of the momentum boundary layer is the same for the stationary and for the pulsating ve loc i ty  com-  
ponents and is very small  - equal  to 6~ ---- ]/2v / (o. At y > 5 t, i . e . ,  outside the momentum boundary layer,  there ex -  
ists a steady flow with longitudinal veloci ty  

3 B 2 2~ 
uo---- 2 (oR sin--R- 

In the original system of coordinates Oxy (Fig. 1) the veloci ty  of the secondary flow is negat ive.  Rewriting the en-  
ergy equation in the O'xy system (Fig. 1) with origin O' at the stagnation point of the secondary flow, we obtain 

02T 

Oy'Z 
OT u OT OT 
0-7-+ - ~  + ~,-6~- = D - -  

T = T w at y - -  0 
T = 0  a t .  y = o o .  

The longitudinal  component of veloci ty  is 

3 B ~ 2x 2B~ 2x x 
u---- 2 coR sin R o~B s i n - - R - . / ( ~ l ) ~ 2 B c ~  - [ c ~ 1 7 6 1 7 6 1 7 6  

( 1 . 5 )  

The transverse component of veIoci ty  is determined by (1.2) .  Let the temperature  field be represented in the form 

r = To + T' (I. 6) 

where T 0 and 'i" are [he stationary and t ime-dependen t  components,  respect ively .  Substituting (1 .6)  in (1 .5)  and aver-  
aging (1.5)  according ro Rey~-'r, tds' n~ethod, we obtain 

ovo 0 r0 ( +  ori" ( , or'  
""':- -" ~',~ ~ = D - -  - -  - -  (1 .7>  "'= ,~:c ' @2 \ Ox / \ v  Oy / " 

Fig.  2. 

~!ere the last two terms on the right side represent the "pulsating heat  conduct ivi ty" .  

Now we shall  es t imate  the rat io of the thicknesses of the momentum and thermal  
boundary layers.  Assuming, as usual, 

kUo ] 

we obtain for the case in question 

6x (2v / co) 'h 

62 (/~v / uo) ~ P - ~  
Taking for s impl ic i ty  n = 1/2, we obtain 

61 s p m  -~?z-ff 

For s/R << ! and P -< 1 the thickness of the  momentum boundary layer  is much smal ter  than the thickness of the 
thermal  boundary layer .  For the range of Prandtl numbers character is t ic  of gases we may  neglect  the thermal  resistance 
of the  momentum boundary layer .  

With this assumption, the ve loc i ty  components inside the the rmal  boundary layer can be written in the form 

2x 2A 2x ( 3 B 2 ) (1 .8 )  
u o =  A s i n - R - - ,  v o - -  R y c o s - - ~  A - -  2 (oR 

x 2B x ( 6~ 6~ ) 
u / =  2B cos -B- cos (or, v' = ---~-- sin --~- y c o s ( o t - - - ~ - c o s ( o t - - - ~ - s i n o t  (1 .9 )  

It is of interest to solve (1 .7)  neglect ing the "pulsating thermal  conduc t iv i ty . "  We then have 

OTo OTo 02To 
uo - ~ "  - t - 'vo--~-y -~ D Oy----g- (1.10) 

with the boundary conditions 

To-~T~o at g.~-=0, To~---O at y ~ c o .  
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In order to solve (1.10) we shall transform the equation from the rectangular coordinates x, y to v on Mises' vari- 
ables x, $ .  Keeping in mind that u 0 = a$/0x and v 0 = -  0~#/0y, we obtain 

OTo 02To 2x 
0 ~ =  AD ~ s i n - R - - .  

This equation can be reduced to the heat conduction equation 

i " 2Xdx) (1.11) ~o00To .-~ D ,@-'5":,.O2T~ (0 = . A s in : -~  

o 

with the boundary conditions 

To -~- Tw 

The solution of (1.11) is 

at g = 0 ,  T 0 = 0  at y = c ~ ,  To-----0 at 0==0,  ~ 2 = 0 .  

T o = T  i t - - e r r  . (1.12) 

Using (1.12), we obtain the Nusselt number, based on the radius, for the cases under consideration 

V ~  x 
No = ]/~(aD cos -~- (1.13) 

Time-averaged equation (1.7) contains the unknown value of the temperature pulsation in the thermal boundary 
layer. 

Lighthill [9] has constructed a theory that makes it possible to calculate the value of the temperature pulsation from 
values of the velocity pulsation in a laminar boundary layer. 

For y > 61 the temperature pulsation is given by 

T' ~- ~u OTo -- ,~ " ~  dt -- I v' ~OT~ dt . 

Using (1.9), we have 

x sin(at OTo 2B x OTo ~ysin(at 81 51 ] 
T' = - -  2B cos Tl o) Ox R sin -R--- - ~ y  [_ (a 20) sin (at -t- ~ -  cos (at . 

From (1.9) and (1.14) we can easily derive expressions for the "pulsating thermal conductivity ~ terms 

(1.14) 

OT' "~ 4/ OT"~ Be5l 2x cOTo 
Ox / - l -  \ v '  = Oy / o.)B 2 cos R Oy 

Substituting (1 .8)  and (1.15) in (1.7)  and carrying out certain transformations, we obtain 

(1.15) 

02To ~ OTo 
0~ + k (X) ~ = M (X) OX 

where 

~--- 3y -I- 61, 

Using Shvets' transformation [10] 

X 

o 

we obtain the equation 

1 Be t B e 
M ( X ) ~  (aB~ D,sin2X, k(X) = 3 r cos2X. 

x 
i k (X) c ( X ) = 2  ~ d X  
0 

02To f OTo 
O z 2 + y z -5-i-z ---0'  

the general solution of which is of the form 

T0 = Cl + C2erf ('/2z). 

Substituting the boundary conditions, we obtain 

To = T w [ i  - -  err (3y ~- 81) B cos X B81 cos X ] - I  
1/6coR'D ] [ l - -  err ~r-7-6~R-----~ J 

which after simple calculations leads to 
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N o =  ]/ '6-cosX B exp[--VaP(s2/B2) cos"-X] (1.1s 
] / ~  ]/-~--D l - - e r f l / a  V'3(s/ R) P'hcos X 

Comparing (1.13) wi th(1 . ]6) ,  we see that pulsating heat transfer leads to the appearance of an add i t iona lmul t i -  

plier, which is always somewhat greater than 1. For s/R << 1 and P -< I this factor is practically equal to unity, and 
all heat transfer is due to the secondary acoustic flow. The rate of heat transfer is determined by (1.13), which, aver- 
aged over the cylinder, has the form 

N = l . 7 6 B *  ( B * = ~ _ ~ ) .  (1 17) 

This equation connects the rate of heat transfer with the basic parameters of the sound field. 

w During the experimental study of the heat transfer from a cylinder it was necessary to satisfy the following con- 

ditions: 

(1) The effect of free convection must be negligibly small.  
(2) The amplitude of particle displacement must be less than the characteristic dimension of the body, i . e . ,  

s/R < 1. 
(3) The wavelength of the oscillations must be greater than tile dimension of the body, i . e . ,  X/27rk > 1. 

The first condition can be satisfied by appropriate choice of cylinder diameter and temperature difference, and the 

second and third conditions by appropriate choice of the parameters of tile sound field. 

Ira the experiments we investigated heat transfer from a wire in a standing wave field at the borderline between the 

sonic and ultrasonic ranges. 

Fig. 3. 

The high-frequency acoustic oscillations were obtained by means of an e lec-  
trodynamic ultrasonic generator, which, unlike gas-jet sources, made it possible 
to obtain pure sinusoidal oscillations at a fixed frequency with sufficiently high 

sound intensity. 

A diagram of the ultrasonic installation is shown in Fig. 3. Cylinder 1, the 

acoustic wave emitter ,  is held in the middle, where the oscillation amplitude is 

lowest, by a thin flange 2. A thin-walled ring 3, machined at the end of the cy-  

linder, serves as the secondary winding of a high-frequency transformer, whose 
primary winding 4 is wound on the core of a dc magnet 5. The diagram also shows: 
6 - reflector, 7 - calorimeter,  8 -- magnet ic-bias ing rectifier, 9 - hf amplifier,  
10 - phase converter, 11 -- power supply. A current flowing in the primary winding 

of the high-frequency transformer induces a current in the shorted winding 3, which 
interacts with the fixed field of the magnet and generates a force that pushes or 

pulls the winding. 

When the current frequency coincides with the natural frequency of vibration 
of the cylinder, the cylinder emits intensive acoustic waves. The operation of the 
emitter is stabilized by means of an e lec t ro-mechanical  circuit,  consisting of a 
feedback capacitor, an amplifying power-supply device,  and a phase converter. 
The Dequency and shape of the emitted oscillations is controlled by means of an 

ICh-6 frequency meter and a "Duoskop" oscillograph. 

is measured by means of spherical barium ti tanate transducers (5 and 10 mm in 

115 

The intensity of the oscillations 
diam. ) on an AZ -2 accoustic probe, operating with a VZ-2A vacuum-tube  voltmeter.  The emitters used operated at 

11.5 and 18 kilocycles. A flat metal  screen is mounted above the upper end of the emitter in order to create a standing- 

wave field. Oscillation frequency at the antinodes of the standing waves was 160 dB (1 W/cmZ). 

The calorimeter is made of platinum wire 195 g in diam. and about 200 mm in length, mounted in the form of a 
flat coil on 50-g constantan tension wires in a special holder, in such a way that the whole coil lies in a cons tant - in ten-  

sity sound field. The measuring circuit is shown in Fig. 4, where 1 - battery bank, 2 - rheostat, 3 - standard re- 

sistance, 4 - R2/1 potentiometer,  5 -- switch, 6 -- wire calorimeter,  7 - measuring section, 8 - ammeter.  

In order to e l iminate  the effect of heat conduction from the ends of the wire to its middle section, the measuring 

section 7 (Fig. 4) 10 mm in length is connected to the measuring instruments by means of 12~ tungsten wires, attached 

to the end points of the measuring section by spot welds. 

The diameter and length of the measuring section were measured on an IZA-2 horizontal comparator with a 
MOV-I-15 screw-type ocular micrometer correct to within several microns. Temperature was determined from the- 

temperature dependence of the resistivity of platinum [11] to within 1%.  The temperature of the ambient  air 



was measured with a copper-constantan thermocouple, 

The resistance of the measuring section at 20"C was determined by calculation, 
~ as well as by measurement of the voltage drop at very low currents. 

During the experiments the calorimeter was positioned in a plane with a fixed 
oscillation intensity above the emitter. Instrument readings were taken after the 
temperature of the measuring section reached a constant value. In order to satisfy 

3 condition (1), the experiments were carried out with temperature differences be- 
i ] tween 25 and 120~ 

The results of the preliminary measurements of free convection were practically 
/ 2 identical with published data [12]. The analysis of the experimental data on heat 

transfer in a sound field indicates that all the results can be well represented in the 
El,I,[ , form of a relation between the Nusselt number and the Peclet number based on the 

Fig. 4. velocity of the secondary flow. 

The results of the theoretical solution and of the experiments are shown in Fig. 5. The agreement can be regarded 

as satisfactory. 

Thus it turns out thatfor s / R < l  heat transfer grows )/ [ | / 
linearly with increasing oscillation velocity in the sound / 
wave, while at constant oscillation intensity an increase 6 
in sound frequency leads to a decrease in heat transfer. 

Equation (1.17), which is corroborated by experi- l 
ment, can be useful for estimating the effect of the 4 
parameters of a sound field on heat and mass transfer / 
processes. / o  

w When the amplitude of particle displacement 2 / ~ 
is much greater than the dimension of the body, i . e . ,  / 
s/R >> 1, the heat transfer process can apparently be 
regarded as quasi-stationary. Using, for example, / 

8 ~ McAdams' formula for heat transfer from a cylinder 0 /  l 2 3 4 
to a stationary stream [13]: 

0 p0.a i v /  

one can easily obtain the time-averaged Nusselt number for harmonic oscillations 

N _ 035 + 04s~ [ ~d ~05.0 (3.1) 
po3 kV~v/ 

It is interesting that (3.1) exactly coincides with the experimental formula of Deaver, Penney and lefferson [3], 

The author wishes to thank S. S. Kutateladze and I. A. Yavorskii, under whose guidance the present work was 
carried out. 
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